JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 63 No 3 (2018): Journal of the Chilean Chemical Society
Original Research Papers

THE EFFECT OF INTRAMOLECULAR H-BOND INTERACTIONS IN THE ISOMERIZATION PROCESS IN AMINO ACIDS

Selvarengan Paranthaman
Department of Physics and International Research Centre, Kalasalingam University
Published September 12, 2018
Keywords
  • cis-trans isomerization,
  • H-bonds,
  • barrier energy,
  • amino acids,
  • Fourier decomposition potential,
  • density functional theory
  • ...More
    Less

Abstract

The effect of intramolecular hydrogen bond (H-bond) interactions in the cis - trans isomerization of the amino acids such as, cysteine, serine, threonine and valine have been studied using density functional theory method. Our calculations have shown that the geometrical parameters are significantly changed during the isomerization process. This is due to the presence of intramolecular H-bonds within main chain or in between side chain and main chain. The barrier energies have been calculated for isomerization process in all the amino acids, which is more for cysteine and less for valine. The Fourier decomposition potential has been obtained for the above named amino acids which show that V2 potential has higher value. The vibrational frequency analysis has been carried out for the cis and trans forms of cysteine, serine, threonine and valine amino acids and the results are discussed.

References

  1. A. G. Császár, J. Am. Chem. Soc. 114 (1992) 9568.
  2. C.H. Hu, M. Shen, H.F. Schaefer, J. Am. Chem. Soc. 115 (1993) 2923.
  3. A.G. Császár, J. Phys. Chem. 100 (1996) 3541.
  4. A.G. Császár, W.D. Allen, H.F. Schaefer III, J. Chem. Phys. 108 (1998) 9751.
  5. A.G. Császár, A. Perczel, Prog. Biophys. Mol. Biol. 71(1999) 243.
  6. C.M. Jones, M. Bernier, E. Carson, K.E. Colyer, R. Metz, A. Pawlow, E.D. Wischow, I. Webb, E.J. Andriole, J.C. Poutsma, Int. J. Mass Spectrom. 267 (2007) 54.
  7. Q. Ashton Acton, Aromatic Amino Acids – Advances in Research and Treatment, Scholarly Editions, 2013.
  8. K.N. Rankin, R.J. Boyd, J. Phys. Chem. A 106 (2002) 11168.
  9. S. Scheiner, Hydrogen bonding: A Theoretical Perspective, (Oxford University Press, New York, 1997).
  10. Z.T. Li, L.Z. Wu, Hydrogen Bonded Supramolecular Structures. (Springer Berlin Heidelberg, 2015).
  11. A. Kovacs, A. Szabo, I. Hargittai, Acc. Chem. Res. 35 (2002) 887.
  12. P. Lipkowski, A. Koll, A. Karpfen, P. Wolschann, Chem. Phys. Lett. 360 (2002) 256.
  13. E.G. Bakalbassis, A.T. Lithoxoidou, A.P. Vafiadis, J. Phys. Chem. A 107 (2003) 8594.
  14. H.Y. Zhang, Y.M. Sun, X.L. Wang, Chem. Eur. J. 9 (2003) 502.
  15. E. Arunan, G.R. Desiraju, R.A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D.C. Clary, R.H. Crabtree, J.J. Dannenberg, P. Hobza, H.G. Kjaergaard, A.C. Legon, B. Mennucci, D.J. Nesbitt, Pure Appl. Chem. 88 (2011) 1619.
  16. M. M. Deshmukh, S. R. Gadre. J. Phys. Chem. A 113 (2009) 7927.
  17. K. Wendler, J. Thar, S. Zahn, B. Kirchner. J. Phys. Chem. A 114 (2010) 9529.
  18. F. Duarte, E. Vöhringer-Martinez, A. Toro-Labbé, Phys. Chem. Chem. Phys. 13 (2011) 7773.
  19. I. Tunon, E. Silla, M.F. Ruiz-Lopez, Chem. Phys. Lett. 321 (2000) 433.
  20. F.R. Tortonda, J.L. Pascual-Almir, E. Silla, F.J. Ramirez, J. Chem. Phys. 109 (1998) 592.
  21. P. Selvarengan, P. Kolandaivel, J. Mol. Struct. (Theochem) 617 (2002) 99.
  22. A. Perczel, A.G. Császár, J. Comp. Chem. 21 (2000) 882.
  23. S. Gronert, R.A.J. O’ Hair. J. Am. Chem. Soc. 117 (1995) 2071.
  24. S. Shirazian, S. Gronert, J. Mol. Struct. (Theochem) 397 (1997) 107.
  25. L Schafer, K. Siam, V.J. Klimkowski, J.D. Ewbank, C. Van Alsenoy, J. Mol. Struct. (Theochem) 204 (1990) 361.
  26. L. Schafer, S.Q. Kulp-Newton, K. Siam, V.J. Klimkowski, C. Van Alsenoy, J. Mol. Struct. (Theochem) 209 (1990) 373.
  27. A. Fernandez-Ramos, E. Cabaleiro-Lago, J.M. Hermida-Ramon, E. Martınez-Núnez, A. Pena-Gallego, J. Mol. Struct. (Theochem) 498 (2000) 191.
  28. B. Lambie, R. Ramaekers, G. Maes, G. J. Phys. Chem. A, 108 (2004) 10426.
  29. T. Szidarovszky, G. Czakó, A.G. Császár, Mol. Phys., 107 (2009) 761.
  30. S.G. Stepanian, I.D. Reva, E.D. Radchenko, L. Adamowicz, J. Phys. Chem. A, 103 (1999) 4404.
  31. J.E. Del Bene, Hydrogen bonding: 1. Encyclopedia of Computational Chemistry, John Wiley: Chichester, UK, 1998; Vo1. 2.
  32. J.E. Del Bene, M.J.T. Jordan, J. Mol. Struct. (Theochem), 573, (2001) 11.
  33. A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
  34. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B, 37 (1988) 785.
  35. P. Selvarengan, P. Kolandaivel, J. Mol. Struct. (Theochem) 671 (2004) 77.
  36. L. Radom, J.A. Pople, J. Am. Chem. Soc. 92 (1970) 4786.
  37. Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
  38. C. Cox, T. Lectka, J. Am. Chem. Soc. 120 (1998) 10660.
  39. S. Dokmaisrijan, V. Sanghiran Lee, P. Nimmanpipug, J. Mol. Struct. (Theochem) 953 (2010) 28.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP